AGMIN NEWSLETTER No. 231

Some Frequently Encountered Objections to the Use of Algicides

1. Copper Sulphate "works and its cheap"

Despite the fact that copper sulphate has been used for more than 50 years, the NRA has *not registered* this raw material as an approved algicide.

- Copper Sulphate is not an efficient algicide, especially in hard water
- Copper Sulphate requires at least 1.0 ppm added copper to be effective, up to 3.0 ppm in hard water
- Copper Sulphate creates high load of copper in the sediments, due to precipitation of copper hydroxide
- Copper Sulphate is more toxic to fish and invertebrates than chelated copper in Cupricide[®].

2. Copper is "a toxic heavy metal"

- Copper is an essential micronutrient for all plants, animals and humans
- Copper-chelate of Cupricide® is rapidly and preferentially absorbed by algae within 3 hours
- Copper-chelates are strongly absorbed by clay particles within 24 48 hours and are thereby immobilised in the sediments
- Copper concentrations in water treated with Cupricide[®] return to ambient, background levels within 24 – 48 hours
- Ambient copper concentrations in dams and water storages are in the range 10-50 µg/L, which is not harmful to fish or aquatic plants
- WHO has set an upper limit of 1000 μg/L copper in drinking water.

3. Treating Algal Blooms "will release toxins" into water

- Harmful algal blooms of blue-green algae release toxins into water even without treatment, since
 10 20% of the total cells die or become leaky through natural causes during a bloom
- Toxin production is directly proportional to the total cell numbers of toxic algae
- It is preferable to kill algal blooms at an early stage of development, when cell numbers are less than 15,000 cells/mL (Alert Level 2)
- Algal blooms can double in cell counts within 3 days and increase ten-fold in 10 days
- An algal bloom at Alert Level 2 will grow to 140,000 cells/mL in 10 days, releasing toxins from 10% (14,000 cells/mL) of the total mass
- A strategy "to do nothing" is not a responsible approach to reducing the risks as far as reasonably practicable (see Section 6)
- The continuous use of carbon filters to remove toxins is very expensive compared to the costs of using Cupricide[®].

4. Copper is "toxic to fish"

- Copper at the required level is an essential micronutrient for fish
- Ambient total copper concentrations in fresh-waters, especially in contained water-bodies, fall in the range 10-50 µg/L
- Chemical speciation of copper is an important factor in determining toxicity; copper is present as free copper ions, inorganic complexes, organic chelates, clay-sorbed fractions and hydrous metal oxides
- Fish can tolerate certain levels of copper, depending on the water quality, chemical speciation, exposure times and fish species
- Exposure times to copper for fish in waters treated with Cupricide[®] is <24 hours, since the added copper is rapidly removed within this period
- Copper sulphate is five-times more toxic to fish than Cupricide[®].

5. Copper Sulphate "costs less to use"

- Copper sulphate requires 5 10 times higher copper concentration when compared to Cupricide[®]
- Copper sulphate is inactivated by hard water; only 30 60% of the added copper is algicidal
- Copper sulphate is difficult and hazardous to dispense as crystals and is slow to dissolve; this increases the total costs of application
- Copper sulphate leaves large residues of copper hydroxide on the sediments, thereby increasing the environmental costs
- Cupricide[®] is a superior algicide on the basis of:
 - Algicidal effectiveness (5 10 times better),
 - Ease of application: liquid vs solid,
 - Negligible environmental impact on fish, invertebrates and sediments,
 - Total costs of achieving the desired outcome.

6. We can "rely on filtration systems" to remove algal blooms

- A standardised "risk assessment" procedure should be used to reduce the risks from harmful algal blooms
- Risk is the product of Likelihood x Consequence
- What is the likelihood of a hazardous event from algae reaching the filtration plant
- What are the consequences of blockage of water treatment plants and of toxin release into municipal water supplies
- Can the risk be reduced, as low as reasonably practicable, by controlling algal blooms
- What are the costs and consequences of using expensive carbon filtration systems compared to using Cupricide[®].

